1908.10834v4 [cs.DC] 29 Feb 2020

arxXiv

UWB-GCN: Accelerating Graph Convolutional
Networks through Runtime Workload Rebalancing

Tong Geng', Ang Li*, Tiangi Wang’, Chunshu Wu®, Yanfei Lil, Antonino Tumeo?, Shuai Che?®,
Steve Reinhardt’ and Martin Herbordt"

"Boston University

*Pacific Northwest National Laboratory
SMicrosoft Research
1Zhejiang University

Abstract—Deep learning systems have been applied mostly
to Euclidean data such as images, video, and audio. In many
applications, however, information and their relationships are
better expressed with graphs. Graph convolutional networks
(GCNs) appear to be a promising approach to efficiently learn
from graph data structures, having shown advantages in many
critical applications such as power system analysis, chemical
reactivity prediction, material property prediction, E-commerce,
cybersecurity, etc. As with other deep learning modalities, hard-
ware acceleration is critical. The challenge is that real-world
graphs are often extremely large and unbalanced; this poses both
significant performance demands and design challenges.

We propose an architecture that accelerates GCN inference,
the Ultra Workload Balanced GCN (UWB-GCN). To address the
major performance bottleneck of workload imbalance we propose
two techniques, dynamic local sharing and dynamic remote
switching. Both rely on hardware flexibility to autotune the
system; this is effected with negligible area and delay overhead.
In particular, UWB-GCN profiles the sparse graph pattern while
continuously adjusting the workload distribution strategy among
a large number of processing elements (PEs). Once the system
converges to an ideal configuration, this configuration is used for
the remaining iterations. To the best of our knowledge, UWB-
GCN is the first accelerator design targeting GCNs and the first
that autotunes workload balance in the accelerator in hardware
rather than software. These methods result in near-ideal work-
load balance in processing sparse matrices. Experimental results
show that UWB-GCN can perform inference of the Nell graph
(66K vertices, 266K edges) in 8.1 ms; this corresponds to speedups
of 199x, 16x, and 7.5x as compared with, respectively, CPU,
GPU, and a baseline design with no workload rebalancing.

I. INTRODUCTION

Deep learning paradigms such as Convolutional Neu-
ral Networks (CNNs) [23] and Long Short Term Memory
(LSTM) [20] have been applied to a wide range of applica-
tions, from image classification, through video processing, to
speech recognition, and to natural language processing. These
paradigms are only able to extract and analyze latent informa-
tion from euclidean data such as images, videos, audios and
texts [37]. This fact limits the real-world applications of neural
networks.

In the real world, an increasing number of applications, such
as E-commerce [6], [42]], molecular bioactivity identification
in medical research [[14f], social network analysis [22], [35],

cascading failure prediction of national power grid, etc., use
non-Euclidean data structure and are modeled as graphs with
nodes referring to the objects involved in target applications
and edges representing the relations between nodes. For all
these applications, graphs have tremendously large numbers of
nodes which degrees vary dramatically, leading to significant
data irregularity.

The irregularity in graph data makes most existing deep
learning algorithms fall short and critical feature extraction
operations, such as convolutions, not directly applicable. As
a result, Graph Neural Networks have been proposed, in
various forms, to extend deep learning approaches to graph
data [10], [15], [27]I, (301, [34]], [37]. Among these, the Graph
Convolutional Network (GCN), an approach that marries some
ideas of CNNss to the distinct needs of graph data processing,
has demonstrated significant potentials [7]], [L1]], [22].

With the rapid development of GCNs, designing specialized
hardware accelerators for GCN inference has become an
urgent issue. GCNs have already been adopted in multiple real-
world applications, including electric grid cascading failure
analysis [29], prediction of chemical reactivity [9]], prediction
of synthesized material property [38]], modeling polypharmacy
side-effects [49]], accurate advertisement in E-commerce [41],
cybersecurity [31], etc. [26], [37]. Many of these applications
require low-latency, high-throughput GCN inference. Existing
platforms, however, are not well-suited to handling the irreg-
ularity of the sparse graph data, thus hindering the practical
utilization of GCNss.

Although sparsity has already been addressed in many
existing sparse-CNN (SCNN) accelerator designs [2], [18]],
[21], [45], [47], the challenges of accelerating GCNs are
significantly different. The first difference is the source of
sparsity. For SCNNs, the majority of the sparsity comes from
the weights (due to model redundancy). Two types of prun-
ing/compression techniques have been proposed for leveraging
this sparsity: structural pruning condenses the weight matrix
during the training [12], [36], while unstructured pruning
(18], [25], [47] can pre-profile the weight matrix for design
specialization, as the weight matrix has been fixed before
inference. For GCNs, however, the sparsity comes from the

TABLE I
MATRIX SPARSITY AND DIMENSIONS OF THE 2-LAYER GCNS FOR THE 5
GRAPH DATASETS. F1 AND F2 ARE THE INPUT FEATURES OF LAYER-1/2.
F3 1S THE OUTPUT FEATURES OF LAYER-2.

CORA | CITESEER | PUBMED | NELL | REDDIT
A 0.18% 0.11% 0.028% | 0.0073% | 0.043%
Density \ 100% 100% 100% 100% 100%
X1 1.27% 0.85% 10.0% 0.011% 51.6%
X2 | 78.0% 89.1% 77.6% 86.4% 60.0%
Node | 2708 3327 19717 65755 232965
Dimension F1 1433 3703 500 61278 602
F2 16 16 16 64 64
F3 7 6 3 186 41

input data itself and is only apparent at runtime. Therefore,
existing weight-focused SCNN pruning and compression tech-
niques cannot work well. In addition, compared with deep
CNNs comprising dozens or even hundreds of layers, existing
GCN models are usually very shallow, most of which are no
more than three layers [46] |'} Due to tremendous information
aggregation at the nodes per layer, the weight matrix is very
dense and has little redundancy.

The second difference is the degree of sparsity. For SCNNs,
the dimensions of the weights are typically from dozens to
hundreds, with sparsity around 50%. Thus, it can either be
assumed that the weight matrix fit in on-chip memory (after
compression) [12], [18]], or a small scheduling window can
be used for index matching [40] when multiplying the sparse
matrices (i.e., pairing the rows of the first matrix with correct
columns of the second matrix). For example, Cambricon-S
[45], [47] and Stitch-X [25]] compare hundreds (e.g., 256) of
index pairs per cycle and assume that sufficient non-zeros (i.e.,
nnz) can always be found for each PE. This may be true for
SCNNs, but for GCNs, the dimensions of the sparse matrices
can range from thousands to millions, with sparsity larger than
99.9% (see Table [). This leads to insurmountable problems
for both SCNN approaches. For the first, the sparse matrix no
longer fits into on-chip memory, leading to irregular off-chip
memory access. In the second, either the window size is kept
the same and the system remains mostly idle, or the window
size must be tremendously expanded making the hardware
unfeasible.

The third difference is the distribution of sparsity. As shown
in Figure [I] for SCNNs the distribution of number of non-
zeros per row or column is roughly balanced so the impact of
workload imbalance is not very prominent [21], [47]; it can
thus be resolved via a centralized task queue [18|]. However,
the huge real-word graphs for GCNs often follow the Power-
Law distribution (see Figure |I[), meaning that a small set of
rows/columns can have the majority of the non-zeros. This
can lead to serious runtime workload balancing scenarios for
which existing SCNN accelerators were not designed. Due to
these reasons, novel accelerator designs are required for the
emerging GCN workloads.

We thus propose UWB-GCN, a hardware accelerator for
GCN inference with runtime workload rebalancing. The pro-
cessing begins by using an online profiler to accurately assess

! According to [26], stacking multiple GCN layers leads to over-smoothing
and accuracy degradation, i.e., all nodes converge to the same value.

0.07

Ordered NNZ Ratio per Row
05

Nose-2 GCN

o o
S =
2 8
°
L

03

o
g

Non-zero Ratio
o
o

e o 9
9
@

2
N
Non-zero Ratio

5}

5E-4 3E-5

s
° 2

0 50 100 150 200 250 300 350 65755
Row ID

Fig. 1. Ordered nnz density-per-row histogram for GCN and SCNN. (1)
Adjacency matrix of the NELL graph for GCN, following the power-law with
most nnz clustered in 100 out of 65755 rows. (2) Unstructured compressed
AlexNet weight matrix for SCNN, which is roughly balanced across 384 rows.

0
0 50 100 150 200 250 300 350
Row ID

the workload imbalance. The imbalance information is used
by two strategies for rebalancing the workload: local sharing
and remote switching. Local sharing rebalances the workload
among neighbors. However, given only local sharing, when
elements are clustered, it may take many iterations for the
autotuner to converge. We solve this problem with remote
switching, which shuffles larger regions. Figure [2] illustrates
the autotuning process among 10 PEs. The color of the
PEs indicates their utilization. Utilization=100% means the
workload processed by this PE is the same as if the entire
workload is evenly distributed among all PEs. Utilization<
100% (red shift) and Utilization> 100% (blue shift) indicate
over-utilization and under-utilization, respectively.

The goal is to balance the workload among all PEs. As can
be seen in Figure [2] (starting top left and moving anticlock-
wise), in each autotuning iteration, we first perform remote
switching to balance the workload of large regions (top left to
bottom left) and then we perform local sharing for fine-grained
tuning among neighbors (bottom left to bottom right). We
again measure the workload distribution and, if necessary, start
a new rebalancing iteration (bottom right to top right). After
several iterations, the system converges to the ideal balanced
state, which is then used for the remainder of the computation.
All profiling and adjustment are performed by hardware at
runtime with negligible area and delay overhead.

We implement UWB-GCN in Verilog-HDL and evaluate
it on a Xilinx VCU-118 FPGA. This is only for demon-
stration purposes since UWB-GCN does not rely on any
FPGA-specific features. The results show that UWB-GCN
can enhance the average PE utilization from 60% to 92% as
compared to a baseline design without workload balancing.
Overall, this paper makes the following contributions:

o« We propose the first hardware accelerator for graph
convolutional network inference.

¢ To handle the ultra workload imbalance issue, we pro-
pose a hardware-based workload distribution autotuning
framework, which includes an efficient workload profiling
technique and two workload rebalancing strategies.

« Evaluations on an FPGA show that the autotuning frame-
work can quickly converge to the optimal workload distri-
bution and thus achieve significant performance improve-
ment. Compared with CPU (Intel Xeon-E2698v4 + MKL-
v2018), GPU (NVIDIA Tesla-P100 + cuSparse-v10.0),
and a baseline accelerator without workload rebalancing,

Perfectly Balanced

%002

Utilization

—PEO
PE1

0 P2 |
PE3

=P

PES ——
PE6

= e .—
PES
[P |

100
200 z
2w
g w0
2
5w
g
I I I o

UTILIZATION (%)

PEO PEL PE2 PE3 PE4 PES PEG PE7 PES PES

o
PEO PEL PE2 PE3 PEA PES PES PE7 PES PED

Auto-Tuning

Remote Balancing ‘
PEO . PEO
PE1 PEL
PE2 PE2 =
PE3 PE3

PE4 (Original PE8) PE4
PES
PE6 PE6
PE7

Local BE]
PE8 (Original PE4))
PE9 Balancing [———"pe9 |

-
Lhdnll nillim
RIS \

PEO PEL PE2 PE3 PE4 PES PEG PE7 PES PES PEO PEL PE2 PE3 PE4 PES PEG PE7 PES PEO

2 iterations of Auto-Tuning Remote
and Local Balancing

=
X
o
3
v
o
<
1]
<
$
w

UTILZATION (%)
UTILIZATION (%)

Fig. 2. Neighbor PE workload sharing and remote PE workload switching.

UWB-GCN achieves average speedups of 248.2x, 79.0x,
and 2.8 %, respectively.

II. MOTIVATION

In this section we briefly introduce GCNs, showing their
differences from traditional network models like CNNs and the
challenges on hardware design arising from these differences.

A. Graph Convolutional Network Structure

Equation [I] shows the layer wise forward propagation of a
multi-layer spectral GCN [22 q
x(+1) (1) (1
A is the graph adjacency matrlx with each row delineating the
connection of a vertex with all the other vertices in the graph.
X® is the matrix of input features in layer-/; each column
of X represents a feature while each row denotes a node. W'
is the weight matrix of layer-/. o(.) denotes the non-linear
activation function such as ReLU . In general, A needs
to be normalized: A = D~2 x (A+1) x D™2 where [is the
identity matrix, and D;; = Y A;;. The reason is that, without
normalization, multiplying the feature vector X)) by A will
change its scale: those nodes with more neighbors tend to
have larger values under feature extraction. Note that during
both training and inference of GCN, A remains constant. Since
A can be computed offline from A, in the remainder of this
paper we use A to denote the normalized A. In general, A
is multiplied only once per layer. However, when multi-hop
neighboring information is to be collected, A can be multiplied
twice or more (i.e., A%, A3, etc.) per layer.
Equation [I] is derived from graph signal processing theory:
convolutions on a graph can be converted to a multiplication of

Number of Features at Layer | Number of Features at Layer 1+
A —

o 0T /(0000 J[o0®)
0 0 2| 0000 Graph Conv ﬁ ocee e
x| 000® s coe®
0 0 £|| 000® 11379 £|C00®
10017 = LO@0® 11612 =loco®
8[2[4
A X 31503 WY X

Fig. 3. The structure of a single layer in GCN.

signal x € RN (i.e., a scalar for each node) and a filter gc RN
in the frequency domain via the Fourier transform:

CONV(g,x)=F ((F(x)0F(w) =UUTxoU"g) 2
where ® denotes the Hadamard product. U is a collection
of elgenvectors for the normalized graph Laplacian & =
Iy—D~ 3AD™2 = UAU. The diagonal matrix A comprises
the eigenvalues. If a frequency domain filter gy = diag(W)
is defined, then Equation [2] can be simplified [7] as:

CONV (gw,x) =UgwU" x 3)
Equation [3] can be further simplified by defining the filter as
the Chebyshev polynomials of the diagonal matrix A [11]},
to obtain Equation [T}

Figure [3] illustrates the structure of a GCN layer. By
multiplying A and X, information from 1-hop connected
neighboring nodes are integrated. By multiplying AX () with
w®, and going through the non-linear activation function
o(.), we obtain the output of this layer, which is also the
feature matrix for the next layer X!+, The matrix A in
different layers can be the same (e.g., normal graphs) or
different (e.g., hypergraphs). After multiple layers, the GCN is
able to extract very high-level abstracted features for various
learning purposes.

B. Workload Imbalance from Power-Law Graphs

Real-word graphs typically follow the power-law distribu-
tion, which states that the number of nodes y of a given
degree x is in proportional to x P for some constant B > 0.
This implies that in the adjacency matrix A, a small number
of the rows (or columns) include the majority of non-zeros
whereas the majority of the rows (or columns) are almost
empty. Figure] shows the distribution of non-zero elements
for the five publicly available datasets that are widely used for
GCN evaluation [22]]. The power-law effect is quite prominent
for Cora, Citeseer, and Nell.

Matrix X is also sparse. For the first layer, the sparsity is
usually larger than 90%. This is because, in a large graph
(e.g., with millions of vertices), many of the features are
local features. Therefore, the entries in A corresponding to
these local features for remote nodes are zero (explaining
the sparsity). As the weight matrix W is usually dense, the
output of AXW is also dense. However, because of the ReLU
activation function, more zeros are generated; thus the final
output (also the input of the next layer) is sparse but with
sparsity usually less than 50%.

The sizes of the matrices in GCNs depend on the dataset
and can range from thousands to millions or more. Therefore,
A can be extremely large and is stored in a sparse format. A
in different layers can be identical or distinct (e.g., evolving

Cora Citeseer

Pubmed Nell

Reddit

2
3
n
]
3

®
3

a

3

@
3

IS
3

o
S

N
S
Num of Non-Zero Elements
3
8

Num of Non-Zero Elements
3
8

Num of Non-Zero Elements

0 0 0
0 500 1000 1500 2000 2500 0 1000 2000 3000 0 5000

Row ID Row ID

IS
=}
3
S

@
<
3
3

Num of Non-Zero Elements
3 B
3 8
3 S

Num of Non-Zero Elements

o

10000 15000 0 2 4 6 0 0.5 1 1.5 2
Row ID

Row ID %10* Row ID x10°

Fig. 4. Non-zero distribution imbalance of Adjacency matrices in Cora, Citeseer, Pubmed, Nell and Reddit datasets

TABLE II
OPERATIONS REQUIRED UNDER DIFFERENT EXECUTION ORDERS
Layer Order CORA | CITESEER | PUBMED | NELL | REDDIT
Layer] | AX X)W [623M | T975M | 1632M | 257G | 163G
AX(XxW) | 9997K | 1.8/M T75M | 47M | 6.1G
Layers | X X] X W [682K | 493.0K 23M | 800M | 764.3M
AX (X xW) | 393K | 357.6K TOGM | 735M | 5303M
ALL |LAXX)XW [628M | 1980M | 1655M | 258G | 171G
AX(XxW) | 133M | 2.23M IS.6M | 782M | 6.6G

or samples from the same graph). X is very large for the first
layer. However, in contrast with CNNs where the number of
features per layer is roughly similar or increasing, the number
of features in GCNs often reduces drastically by layer. It is
possible for there to be thousands of features in the first layer,
but only a few dozen in the second. X is stored in a sparse
format and the output matrix after ReLU is also sparse.

III. GCN BASELINE ARCHITECTURE

In this section we describe an initial architecture for GCN
acceleration. This “baseline” design shares some similarities
with existing sparse CNN accelerator designs, but in addition
it can support ultra-high sparsity and large matrix sizes. In the
next section we augment this design to achieve near-optimal
workload balancing.

A. Matrix Computation Order

To compute AXW, there are two alternative computation
orders: (AxX)xW and A x (X x W). The choice is significant
as it dictates the volume of non-zero multiplications. Based on
our profiling, A is ultra sparse and large, X is generally sparse
and usually has a large number of columns, and W is small
and dense. Looking first at (A x X) x W: since multiplying
A and X requires complex sparse-sparse-matrix-multiplication
and produces a very large dense matrix, multiplying by another
dense matrix W leads to significant computation workload
and long delay. Alternatively, for A x (X x W), both are
sparse-dense matrix multiplications (SpMM) and the scale of
computation is drastically smaller. Table [lI| lists the amount of
computation for the five datasets following the two approaches.
Since the difference is quite obvious, in our design we first
perform X x W and then left multiply with A.

B. Baseline SpMM Design
Given AxB=C, if Ais (mxn), Bis (nxk), and C is
(m x k), then we can reformulate C as:
n—1 n—1 n—1
C=[X AbGoy Y AbGY- L AbGen] @
j=0 Jj=0 Jj=0

where A; is the Jjth column of A and b;; is an element of
B at row-j and column-k. In other words, by broadcasting

(1) g g g 8 csc Vel [1[3]6]5]9[2[3]7]
oToTo o T71omat, Rowin[0[3]1]4]0]1]4]2]
3Jofofo]o

ofslofafo] coPol2[4[5[7]e)

Fig. 5. Compressed-Sparse-Column sparse matrix format.

B
ig. 6. SpMM computation approach.

=8
S
E
=
3
@

FHERRHREREREEN |5

o [I00000000000000Vs

(0000000000000

the jth element from column-k of B to the entire column-
j of A, we can obtain a partial column of C. Essentially,
B is processed in a streaming fashion: each element b;
finishes all computation it involves at once, and then is done.
In this way, we reuse the entire sparse matrix A for each
column of C (k times in total). Such a design brings additional
advantages when A and C are stored in Compressed-Sparse-
Column (CSC) format (see Figure |§[) Further benefit is that it
provides opportunities to pipeline multiple SpMM operations,
as will be discussed later. Since a complete result element
of C requires an entire corresponding row of A, to avoid
expensive parallel reduction in hardware, we partition A and
C along the rows and assign them to PEs. Figure [] shows the
procedure for calculating C. The columns of A and elements
of B in the same color are to be multiplied and stored as partial
results in C with the same color. To reduce the memory access
demand for matrix A, we propose an inter-layer interleaved
data forwarding technique (discussed in Section III.D).

Workload Mapping: In the baseline design, with the assump-
tion that non-zeros are evenly distributed among the rows, we
use a direct and static mapping from matrix rows to PEs. In
Figure [7] every two rows of A are mapped to a separated PE;
each PE eventually processes three non-zeros of A.

C. Baseline Architecture Design

Figure [8]illustrates the baseline design, comprising the mod-
ules of sparse-matrix-memory (SpMMeM), dense-column-
memory (DCM), task-distributor & Queue (TDQ), PE-array,
and an accumulation-buffers-array (ACC). SpMMeM buffers
the input sparse matrix A. DCM buffers the input dense
matrix B. TDQ is for task distribution to the PEs. PE-array
is for concurrent multiplication. Finally, ACC buffers the

=
]
m
o
£

ith Sparsity = 75%

Rz 2z]
s B

PE2 s s o s | e s Y |
e e s e | - .- =228
i s e s - .- e

el o e s f e X - =
i I v W

PES s N s [[s [s |
i e [e |

PRl | D B B 0
o e e s

P S o s
o s s [[o

Fig. 7. Partitioning the sparse matrix rows among 8 PEs.

partial results of the resulting matrix C for accumulation.
Depending on the sparsity and storage format of A, we have
two alternative designs for TDQ:

TDQ-1 (left side of Figure |8)) is used when A is generally
sparse and stored in dense format. We perform the direct row
partition as discussed and map to the input buffer of a PE (see
Figure 7). Each cycle, NPE /(1 — Sparsity) data are forwarded
to a PE given evenly distributed non-zeros. As one PE may
account for more than a single row of A, we allocate multiple
Task Queues (TQs) per PE. As shown in Figure [8}(left), in
each cycle a PE can receive up to 4 non-zero elements. We
have four queues to buffer these non-zeros from different rows
of A. Each cycle, an arbitrator selects a non-empty queue,
pops an element, checks for a Read-after-Write (RaW) hazard
(discussed later), and forwards it to the PE for processing.

TDQ-2 (right side of Figure [8) is used when A is ultra-sparse
and stored in CSC format. Since in CSC the non-zeros are
contiguous in a dense array, if we can directly process the
dense array, we gain from avoiding all the zeros. However,
we suffer from the overhead of navigating to the correct PE as
the indices are no longer continuous and (essentially) stored in
another index array. We use a multi-stage Omega-network for
routing the non-zero data stream to the correct PE according
to their row indices from the index array. Each router in the
Omega-network has a local buffer in case the buffer of the
next stage is saturated. Our design attempts to balance the
data forwarding rate and the processing capability of the PEs.
This is achieved when non-zero elements are distributed evenly
among rows. Compared with a global crossbar network, the
Omega-network design incurs much less area and hardware
complexity; this is especially the case when we have a large
number of PEs. Meanwhile, TDQ also accepts streaming data
from a particular column of the dense matrix B in DCM.

PEs fetch partial results of C from ACC, perform the
new multiplication task, add to the partial results, and save
back to ACC. Each PE is coupled with a bank of ACC to
store the rows of C it accounts for. A PE has two units: a
multiply-accumulate-unit (MAC), and an address-generation-
unit (AGU) for result address generation and forwarding. Since
C is roughly a dense matrix and stored in dense format,
the rows of C are statically partitioned among ACC buffers.
Synchronization is only needed when an entire column of the
resulting matrix C is completely calculated. Consequently, the
imbalanced distribution of non-zeros across columns does not
cause any performance problems.

An important issue here is the Read-after-Write (RaW)
hazard. Since the computations are all floating-point, the
pipelined MAC unit usually takes several cycles to process,
but can still accept new tasks while processing. If the new
task tries to accumulate the same partial result of C (i.e., from
the same row of A), it actually fetches a stale partial result
from ACC, and a RaW hazard occurs. To avoid this hazard,
we implement a stall buffer of size T, where T is the delay
of the MAC units. We track the row indices currently being
processed by the MAC and check whether the current element
is targeting the same row in the RaW-check-unit (see Figure §).
If so, we buffer that job and delay (for a few cycles) until the
hazard is resolved. This is similar to the role of the scoreboard
for register RaW hazards in processor design.

Overall, for each layer of GCN, we first execute SpMM
on X x W. Since X is generally sparse and stored in dense
format, we use TDQ-1. The result of XW is dense. We then
compute A X (XW) which again is SpMM. However, as A is
ultra-sparse and stored in CSC format, we use TDQ-2. The
result is dense, but after ReLU, a large fraction of the entries
become zero and we again have a sparse matrix as the input
feature matrix for the next layer.

D. Pipelining SpMM Chains

Intra-Layer SpMM Pipelining: One can exploit the par-
allelism between consecutive SpMMs (i.e., X x W and A x
(XW)) in a layer. This is based on the observation that when
a column of (XW) has finished computing, and A is constant
and ready, we can start the multiplication of A with that
column without waiting for the entire XW (Figure [9). This
design has two major benefits: (i) we gain extra parallelism
and reduce the overall delay through coarse-grained pipelining,
and (ii) instead of needing large off-chip storage to cache the
resulting XW matrix, we only need to buffer a single column
of XW; this can be done on-chip. This method can be reused
within a GCN layer if left-multiplied by other sparse matrices.
For example, some GCNs collect information from 2-hop
neighbors so the layer formulation becomes A x (A X (X X W))
and the three multiplications can be pipelined.

Inter-Layer SpMM Pipelining: SpMMs from different layers
can also be pipelined. To avoid bubbles and large intermediate
buffers, we allocate hardware resources (i.e., number of PEs)
in proportion to the workload of each SpMM stage (see
Figure [I0). In this way the output generation rate of the
previous SpMM matches the data consumption rate of the
current SpMM. Pipelining SpMMs from different layers has
three benefits: (i) being able to exploit inter-layer parallelism;
(i1) no off-chip memory access is required on the intermediate
result matrix X since data are processed by SpMM engines in a
streaming manner; and (iii) if A is the same for all layers, it can
be reused by SpMM engines across the layers thus avoiding
extra off-chip accesses. This is done by forwarding elements
of A through the layers. If the access rates to A are different
across the layers, we forward elements of A with interleaving
to match the ratio of the access rates.

Sparse
Matrix
Memory

PERADER0ZACRZA00
HEmA0000NEo0Na00
|

Fig. 8. Architecture design for the baseline SpMM engine.

L) Gl W
= S .
TIJlll = = | T ae | | o | | acc
PE1 2] PEL e PES PE7 BUF | | BUF | | BUF
Execution Time

Compute Engines

L: layer; G: Graph

Fig. 9. Exploiting extra parallelism across consecutive SpMM computation
through pipelining.

Interleaved Caching
with step of burst

OO0000) cache

Fig. 10. Pipelining SpMM chains. Data production and consumption rates
are balanced among consecutive SpMMs.

Bandwidth Analysis: Off-chip data access of the big adja-
cency matrix A can be a concern. However, as the access to A
is always continuous in our design, the performance benefits
greatly from the DRAM burst mode. If A can fit in the on-chip
memory, we reuse A across layers. Otherwise, we cache part of
A on-chip to mitigate the pressure on the off-chip bus. Based
on our evaluation, the UWB-GCN accelerator requires around
227 Gbps off-chip bandwidth to keep the hardware busy with
1024 PEs for the 5 datasets evaluated, which can be generally
satisfied by modern computation platforms (e.g., Xilinx VCU-
118 FPGA provides 384 Gbps off-chip bandwidth, VCU-128
provides 3680 Gbps HBM bandwidth, NVIDIA V100 provides
7176 Gbps HBM bandwidth).

E. The Workload Balance Problem

The baseline architecture works well when non-zeros are
evenly distributed among the rows of A. However, when this
assumption does not hold, the performance of the baseline
architecture can degrade considerably due to workload im-
balance among PEs and network congestion. Figures [TTH(A)
and (B) illustrate two types of workload imbalance, local
and remote, and also the histogram from mapping to eight
PEs. Note that both types of imbalance lead to significant
performance degradation, from the expected 2 cycles to 5
cycles and 7 cycles, respectively.

This imbalance issue is unique for GCNs and has not been
faced or resolved by existing work such as with sparse-CNNs

fﬁ\\ﬁi‘ﬁ \ﬁxﬁ\\f‘%lﬁi

< PEDesg]

BUF

AED
BUF

00-2

Sparsity = 75%

o
2
v,

<

il
-

1
i
i

(0BMBORA00E8E
RSN SHARIY &
A0E000RR0000308E
(OREEONRE00N:
IRENWASHANE | B%
HVARWARANNN || §
IR IWASHANAY| | B0
INRRHARNANE ||

PED PEL PEZ FES PE4 PES FEG PET PEQPEL PEZPES PEAPES PES PE7

(A) Local Imbalance (B) Remote Imbalance

Local and remote workload imbalance among 8 PEs with 75%

Fig. 11.
sparsity.
[2], (18], [21]l, [453]l. The reason is that non-zeros in those
sparse matrices are more or less evenly distributed. However,
when dealing with huge and ultra sparse matrices such as the
adjacency matrix of a social-network graph following a power-
law distribution, the condition is quite different. Efficiently
handling of this unique workload balance problem from this
new GCN application is the major research problem for this
work. Typically, when dealing with sparse data structures such
as sparse matrices/tensors, trees and graphs, etc., to achieve
workload balance, the software approach is to profile or scan
the structure through, for example, symbolic analysis, in a
preprocessing stage, and then use the sampled information
to guide the partition strategy later for real processing. In
this work, we show how to dynamically adjust hardware
configuration for continuous workload rebalancing. Our design
can be applied to a variety of specialized accelerators for
processing sparse data structures.

IV. UWB-GCN ARCHITECTURE

We treat the two types of imbalance problems (shown
in Figure [TT) separately. For local imbalance, we propose
dynamic local sharing; for remote imbalance, we propose
dynamic remote switching. Both are dynamic techniques that
measure and adjust for a better task distribution configuration
each time a column of the dense input matrix is processed.
After several columns, the optimal configuration for best
matching the non-zero structure of the sparse input matrix is
obtained. This configuration is then reused for the processing
of the remaining columns of the dense matrix.

The difference is granularity. As described in Section I,
Figure [2] shows the design flow. Initially, we employ equal
partitioning of the baseline design. Some PEs are over-utilized
while others are under-utilized. The ultimate purpose of the
design is to balance the colors (i.e., utilization) by adjusting
or exchanging the workloads of PEs. At the processing of
every column of matrix B (called around), we employ local

balancing by averaging out some of the overloaded work to
neighbors, improving the situation. However, the offloaded
work needs to be returned for aggregation after processing.
The architecture is able to track the runtime utilization infor-
mation of PEs with local balancing at a current iteration. Due
to chip area and design complexity restrictions, we may ex-
change workload between direct neighbors, 2-hop neighbors,
or even 3-hop neighbors, but not all of them. The local strategy
is not efficient enough when non-zeros are clustered in a region
across several PEs.

To address the non-zero clustering issues, we propose
remote PE switching, making remote workload (partially or
completely) exchange between overloaded PEs and under-
loaded PEs. At the end of each round, the utilization infor-
mation tracked after local workload sharing is analyzed by
specific hardware and used to optimize the remote switch
strategy. By interchanging workloads between remote over-
utilized and under-utilized PEs, followed by another round
of local sharing, we can significantly improve load balancing.
Note, the local and remote rebalancing occur in the processing
of every column of the dense matrix B. As the same sparse
matrix A is reused during the processing of every column
of matrix B, the remote switch strategy generated in prior
rounds is valuable and can guide the processing of the later
rounds. Our accelerator remembers the remote switch plan
at the end of each round and incrementally adjust it when
processing every next column based on the newly obtained
utilization information from local balancing. After several
rounds, the configuration best matching the sparse structure
of A is obtained, and we use it for the remaining rounds
with almost perfect workload balancing. In the following, we
discuss how to realize this strategy in hardware.

A. Dynamic Local Sharing

PE utilization differences must be estimated before the
workload can be adjusted. Figure illustrates 1-hop local
sharing for TDQ-1 and TDQ-2.

TDQ-1: Before a new task is pushed into a PE’s TQ, the
PE compares the number of pending tasks with those in the
neighboring TQs. The task is then forwarded to the TQ with
the fewest pending tasks. If forwarded to a neighbor, the result
needs to be returned to the ACC buffer of its original PE for
accumulation after the multiplication (see Figure [I2}(B)). The
valid return address is calculated in the AGU unit of a PE.

TDQ-2: For the Omega network, the final layer of the multi-
stage network handles forwarding. In Figure [I2}(C), two PEs
share the same final-layer switch; we refer to this pair as
a group. In Figure [I3] a group has four PEs sharing the
same final-layer switch so we focus on the TQs of the final
layer. After determining the pending task status, the id of the
destination PE is known. We adjust the address tag of the task
before it is pushed to the TQs of the final layer. To enable
PEs on the group edge (i.e. the leftmost or rightmost PEs) to
communicate with their out-of-the-group neighbors, we add
extra links in the final layer, as shown in Figure (D). Note

0 PEl

PE
|

ACC ACC

Buf Buf

(B) One-hop Local Balancing- TDQ(1)

PEO ‘PEI ‘PEZ Pl

ACC ACC | ACC
| Buf | Buf Buf

(A) No Local Balancing -TDQ(1)

Local Balancmg

ACC
Buf

ACC
| Buf |

ACC
| Buf |

| [[|
el _— P —
— 0] T 0] 0}
[T [T T T PE destination ‘ >‘<‘ |
adjustment
[| * * [I | ’
n n it n
‘ B ‘ i3 H 9 2 PE3. I:Ig‘ p)
] R W ¥ A
PE3 =1 g > H 9 ! ' PEO
‘ PEO ‘ PEl | PE2 | PE3 | ¥
l l 1 l Local Balancing PTO P]El [Piz [P?S
MK
= i [
ACC | ACC | ACC | ACC INEE Acc ACC IYeE
Buf Buf Buf Buf Buf Buf | Buf

ol

m
c

Buf
(C) No Local Balancing — TDQ(2) (D) One-hop Local Balancing- TDQ(2)

Fig. 12. Architecture design for local workload sharing.

that Figure[I2}(D) shows sharing only among 1-hop neighbors.
By considering more distant hop neighbors, a more balanced
design is obtained at the cost of higher hardware complexity
and area. This is discussed in the evaluation section.

B. Dynamic Remote Switching

For remote switching, a multi-round autotuning approach is
again used. The idea is to find the most over-utilized PE and
the most under-utilized PE per round (i.e., for a column of
B), and switch a part, or all of their workloads. The fraction
to be switched depends on their utilization gap. The design is
shown in Figure [T3]

The most over-utilized and under-utilized PEs are identified
by using the PE Status Monitor (PESM). Recall that each TQ
has a counter to track the number of pending tasks; these can
trigger an empty signal when reaching zero. The counters are
all connected to a multi-stage MUX-tree with output signal
V. After the jobs of the current round are dispatched W
monitoring begins. When W triggers, some PEs have become
idle. By voting at each level, the MUX-tree is able to identify
the PE group with the highest number of empty signals, i.e.,
the coldspot. When all PEs have triggered the empty signal,
the last to finish is the hotspot.

Having identified hotspot and coldspot PE-tuples with id 7;
for the current round i, to avoid thrashing, we only exchange
a portion of the workload between them. We propose the
following formula to calculate the number of jobs (i.e., rows
of A) to be switched in the i-th round (i.e., a column of B) N;:

0 ifi=1

Ni—14+G;i/G) x (R/2) otherwise
where G; is the largest workload gap (i.e., the workload
difference between hot-spot and cold-spot PEs) for the i-th
round, and R is the initial workload under equal partition.
In the current design, each 7; tuple is tracked for two rounds
using the PE Status Monitor in Figure[I3] Each PE-tuple being
tracked is updated every round according to Equation [5} The

&)

PED
-PE0

Shuffling Switch
HH

Number of Row to shuffle ‘

Ho>
>
H
aie
mie
Ho>
H>
M
H>
H>
s
Hs
H>
H>
H>

Des PE D to shuffle with

Number of PEs
Remote Balancing Control Register

Update Number of

Remote
i Rows to Shuffling

Control

Shuffling |,

Register Table Lookup Number of Rows to Shuffle

PE IDs with
T0 Counts|'pE Status

. PEIDs for Shuffling

Number of Rows to Shuffle
S
Shuffling Lookup Table

\
Pl

Bunynyg
10} 501 3d

Utilization Gap

First & Last PE at

) w
current/previous

1™
S|sE

([}
06l
oYL
[
0z
ol
ool
06
08
0y

=3|os (e
=

ﬁﬁinﬁ -hnﬁ nhﬁﬁ

Next SPMM Engme

iteration found | Utilization Gap
| Monitor |__Tracker ¥
7 N

Addresses for Table Lookup

2
=

»

PEID Selector > First & Last PE at

current/previous
— iteration found

=
=
=
S
S
3
=2
=
<
=

5

sn

Tevious
Address

for Table
Looky

punoy uopesayl

Previous First PE IDs

Current First PE [Ds

[
i
=
Al *
for UpdatedlAddress

PE IDs for

!

Previous Last PEIDs | | |

Current Last PE IDs
! TPE Status Monitor

—fo+
Utilization Gap Tracker

juana je

Shuffling

el 3dse1Risiy

=
E]
=
S
S
3
=2
=
<
=

punoy uoneay

Addre

Fig. 13. Overall SpMM engine architecture in UWB-GCN with local sharing and remote switching. Modules with red border are for remote switching.

number of rounds tracked simultaneously can be customized.
In Figure [I3] two consecutive rounds are tracked.

The workload switching ratio for each tracked PE-tuple is
then adjusted for two or more rounds and is highly likely
to converge. The number of rounds we can track depends
on the size of the tracking window in the PESM and is an
area/performance tradeoff. Calculating Equation [3] is done in
the Utilization Gap Tracker (Figure [I3)). To reduce the hard-
ware cost of calculating G;/G x (R/2) we use a hardware-
efficient approximation; details are omitted due to space lim-
itations. Once the number of rows to be switched between
remote PEs is known, the Shuffle Lookup Table (SLT) is used
to determine which rows are to be interchanged. The IDs of
these rows are forwarded to the Remote Balancing Control
Register (RBCR). In the next round, the destination PE of
these rows is updated in the Shuffle Switches (SS).

For routing data from PEs to ACC buffers note that remote
switching does not require an extra interconnect. The data at
the rows selected to be switched do not need to be routed back
to the original ACC. Instead, at the end of each iteration, the
SpMM engines access the data cached in ACC of the previous
SpMM engines (through a MUX set based on the remote
switch decision). The overhead is low: storage for a copy of
the switch record and a comparator for the index check.

V. EVALUATION

We evaluate the baseline and UWB-GCN designs and com-
pare them with the same GCN networks on other platforms.

A. Evaluation Configuration

We implement the RTL of the baseline and UWB-GCN in
Verilog HDL. We measure the PE utilization, performance,
energy efficiency, and hardware resource consumption on a
Xilinx Virtex UltraScale+ VCU118 FPGA board. Note that the
FPGA is only used as an evaluation platform to demonstrate
the performance of UWB-GCN. The design is a general
architecture that does not leverage any FPGA-specific features
or units.

To measure utilization we add a counter to each PE to track
the number of idle cycles. The number of operating cycles (i.e.,
execution delay) is measured with a cycle-accurate hardware
counter. The counter triggers when the first data is forwarded
to UWB-GCN and stops when the last output feature is
received. The hardware consumption and operating frequency
are reported by Vivado Design Suite-2019.1 after synthesis
and implementation. The board-level power consumption is
measured by a power meter. To perform the cross-platform
comparison, we implement the reference GCN networks in
PyTorch and run them on a high-end server-class CPU Intel
Xeon E5-2698-V4 and an NVIDIA Tesla P100 GPU. For
the SpMM computation PyTorch uses the MKL-v2018 and
cuSPARSE-v10.0 libraries. We also adapt two existing SCNN
designs EIE [18]] and Cambricon-S [47] for the GCN workload
and make a comparison. All latency results reported in our
paper are end-to-end. Data access from DDR/GDDR/HBM of
CPU/GPU/FPGA is included.

The datasets used for evaluation are Cora, Citeseer,
Pubmed, Nell and Reddit; these are the five most widely used
publicly available datasets in GCN research.

B. UWB-GCN Evaluation

The efficiency of the design is evaluated by comparing the
performance, hardware resource consumption, and PE utiliza-
tion of the baseline design (i.e., Base) with the four different
design choices of UWB-GCNs: (i) 1-hop local sharing (i.e.,
Design(A)), (ii) 2-hop local sharing (i.e., Design(B)), (iii) 1-
hop local sharing plus remote switching (i.e., Design(C)),
and (iv) 2-hop local sharing plus remote switching (i.e.,
Design(D)). The only exception is for Nell where we use 2-hop
and 3-hop local sharing; reasons are given below.

Figure [I4] compares the overall GCN inference delay, in-
cluding SpMM kernels and other operations (e.g. ReLU),
and average utilization of PEs for the five designs over the
five datasets. The lines show the overall PE utilization. The
bars show the break-down of delay cycles according to GCN
layer. We also mark the latency lower bound assuming full

. 8K Cora 10K Citeseer 70K Pubmed T — Nell 18M Reddit 10
< 9 . 1"ﬁ{lvos 1.08
S |1o0x oK 60K] 15M 15M] [l SRR 220X LIS Lok |
1.00 :
< oK 50K]
o 12M 12M <
=] 1.22x 1.54x 1.56x 159 S
g 6K| 125 e a0k X 1.62x 0.6-%
a 4K O O 9M 9M N
o 1.91x 1.94x 2.08x 2.11x O O O e 30K =
o 4K4 043
5 6M 6M =)
@ 2K 20K
-E 2K] 10K 3M 3M 0.2
2
° S B (@ (O ((© a\\“ O o\° o\ & N\ & (B @@ O (O o & @
e 025\() oe«,\g oeg\‘) Oec,\g e o9 e;,\@ o9 P Oes\Q Oec,\g oec,\Q ef,\g e 025\() 065\@ Oef,\() 069\9 025\‘) ec,\@ ec,\Q 59
—e— Utilization =-==-=r Ideal Operation Cycles BB Layer 1 Operation Cycles =0 Layer 2 Operation Cycles

Fig. 14. Overall performance and PE utilization of the proposed five designs.

o i Pubmed Nell i

8 Cora % Citeseer S0k 12M Reddit 10

>

G35k ~ ,

5 3.5K 40K: M O'BC

S 3K

s 0.6

§2.5K 3K: 30K 6M I
0.4

< 2k =1

; 2.5K 20K 3M 023

JE1.5|< .

S 1K 2K 10K: 0 0 0

=4 N @ O 0\ o€ N @ O O 3 N @ O © 3 PN @ O O 3 N @ O O

N AR (@ ST AU\ ARP O\ SRRSO\ SR LSRN SO AR\ AP SR
%ac"zos@os\g‘\o f,@“ N & Oé«;“ et ec,@“oec)\q“ © o \Q‘\oe"‘@“oe"\g“oe"‘go & oes\q“ o) e(,\q“oee,\@ & 025@“ oo ec,\t;“oec,@

—e— Layer 1 A*¥(XW) Utilization —e— Layer 1 X*W Utilization —e— Layer 2 A*(XW) Utilization —e— Layer 2 X*W Utilization

I Layer 1 A*(XW) Cycles I Layer 1 X*W Cycles

I Layer 2 A*(XW) Cycles

Ideal Operation Cycles

3 Layer 2 X*W Cycles wz# Operation Cycles for Synchronization

Fig. 15. Per-SpMM performance and PE utilization of the proposed five designs.

Citeseer Pubmed Nell Reddit
70K 1 | | | [| 100k 600K
g 60K 80K s 8w w500k
3 50K 400K
® 40K 60K
] 300K
2 30K 40K
G 20K 200K
T ok 20K 100K
0K 0K
2 A O » O o QO © N %\ o O D @ o
NN\ (\\ o W B (@ <\\ o N <\\ N 10 @D (S <\\ N 0 KON
%ac"eo o oes\q \q & 065@0 ESNIEC o o2 906@9 fa o RN NE IELINED PN e,,\g Oec,q o

L1 A*(XW)Other mmm L1 X*W Other

L1 A*(XW) TQs A L1 X*W TQs

== L2 A*(XW) Other

A L2 A*(XW) TQs wzz L2 X*W TQs

s L2 X*W Other Overall Other

w77 Overall TQs

Fig. 16. Hardware resource consumption normalized to the number of CLBs of the five designs.

PE utilization. For Cora, Citeseer and Pubmed, using 2-hop
local sharing can improve PE utilization from 53%, 71%, and
69%, to 83%, 83%, and 93%, respectively, leading to 1.94x,
1.25x%, and 1.56 x performance improvement. Enabling remote
switching can further improve PE utilization to 90%, 91%,
and 96%, respectively, bringing performance gain to 2.11x,
1.41x, and 1.62x.

After analysis, we found that the remaining 4-10% uti-
lization gap is due to PE under-utilization in the autotuning
phase. For Nell, as shown in Figure [the non-zeros are
highly clustered. In this case, one or two PEs are extremely
over-utilized in the baseline design, leading to only 13%
overall utilization. In this case, even 2-hop local sharing is
still insufficient to rebalance the workload. Therefore, for
the Nell dataset only, we use 2-hop and 3-hop local sharing
(rather than 1-hop and 2-hop) in our evaluation. The results
show that 2-hop and 3-hop local sharing can enhance PE
utilization from 13% to 44%, and 53% respectively, resulting
in 3.4x and 4.3x performance improvements. With remote
switching enabled, the utilization further increases to 69%
and 81%, leading to 5.9x and 7.5x performance gains. For
Reddit, through local sharing, the utilization is already 99%

(from 93% in the baseline). In UWB-GCN, hardware resources
allocated to different layers are in proportion to their volume
of operations. Thus, when perfect utilization is achieved, the
same execution delay can be observed for all the layers. As
shown in Figure[T4] the green and red bars have similar length
at Design(D), while their lengths vary significantly at Baseline.

Figure [T3] further breaks down the numbers of operating
cycles and shows results for each SpMM kernel; this demon-
strates the benefits of UWB-GCN on kernels with various
sparsity and imbalance distributions. As shown in Figure [T3]
the execution times of different SpMM kernels are almost the
same so that SpMM engines are rarely idle while waiting for
their neighbors. The shaded area of the bars represents the
Sync cycles due to workload imbalance; the unshaded area
represents the Ideal cycles assuming perfect workload balance.
The bars in different colors represent the cycles of the four
SpMM operations in the two-layer GCNs [22], [37]: A x (XW)
of Layer-1, X xW of Layer-1, A x (XW) of Layer-2, and X x W
of Layer-2. The curves show the corresponding PE utilizations.

Comparing the datasets: for Cora, Citeseer, and Pubmed,

the imbalance occurs mainly in the A x (XW) SpMM operation
of the input layer, which is significantly mitigated by the

rebalancing techniques of UWB-GCN. For Nell, the imbalance
occurs mainly in the A x (XW) SpMM of the hidden layer;
this imbalance is also diminished by UWB-GCN. Reddit by
itself is already well-balanced. Comparing now the SpMM
operations, the utilization improves significantly for A x (XW)
of Layer-2, X x W of Layer-1, and A x (XW) of Layer-2. For
X x W of Layer-2, although X is sparse after being filtered by
the ReLU activation function of Layer-1, its sparsity is much
lower than that of X in Layer-1; the utilization is thus also
high for the baseline (except for Cora).

Figure|16|compares the overall hardware resource consump-
tion of the five designs over the five datasets. The hardware
resources cost is normalized to the number of Configurable
Logic Blocks (CLBs) used in the design, which is the ba-
sic component of the FPGA. In an ASIC design, this can
be normalized to the number of transistors. The red area
represents the CLB consumption for the TQs of the TDQ
modules. The argument is that, if the task distribution is
more unbalanced, TQs require more slots for the buffering
queue to avoid backpressure. Therefore, by introducing the
rebalancing techniques of UWB-GCN, the area cost of TQs
can be reduced. This is especially the case for Pubmed,
Nell, and Reddit. The green area represents other hardware
modules excluding the TQs. It remains almost unchanged
across the five datasets, which means that the area overhead
from the rebalancing logic of UWB-GCN is very small —
only 2.1%, 3.9%, and 1.9% of the whole baseline-design
area for 1-hop local-sharing, 2-hop local sharing, and remote
switching designs, respectively; for Nell, it is 2-hop and 3-hop.
Combining the two parts, the UWB-GCN design has reduced
hardware resource consumption as compared with the baseline
design. This is largely due to dramatically reduced per-PE TQ
size under more balanced workloads. For example, for Nell,
the required TQ depth in the baseline design for Ax(XW) of
Layer-1 is 65128; in Design(D) it is just 2675.

Finally, Figure shows the utilization improvement due
to iterative workload autotuning. Rebalancing can be accom-
plished within 10 iterations, which is around only 20% of
the total iterations. This means that more than 80% of the
iterations can benefit from operating under the converged
optimal strategy.

C. Scalability of UWB-GCN

We evaluate the scalability of UWB-GCN by running GCN
inference of the five datasets on the baseline as well as Designs
(B) and (D) of UWB-GCN and varying the number of PEs
from 512 to 768 to 1024. In Figure [18] the bars represent the
end-to-end inference execution cycles and the lines represent
the PE utilizations. The dotted lines mark the full utilization
(100%) upper bound.

For the baseline design, the PE utilization drops with
increasing number of PEs since more PEs means fewer rows
per PE, highlighting the imbalance among PEs: they have
fewer opportunities to absorb inter-row imbalance. In contrast,
GCNs with both local sharing and remote switching show
stable (and high) PE utilization. The PE utilizations with only

10

local sharing scale better than the baseline, but worse than
with both local sharing and remote switching. Overall, by
introducing the rebalancing techniques, the performance of
UWB-GCN scales almost linearly with the number of PEs,
and much better than the baseline design.

D. Cross-platform Comparison

Table presents the cross-platform evaluation of UWB-
GCN. We compare inference latency (milliseconds), energy ef-
ficiency (normalized to Graph Inference/kJ), and operating fre-
quency (MHz). The systems evaluated are UWB-GCN (Design
(D) with 1024 PEs); GCN implementations of MKL-v2018-
based Intel Xeon E5-2698V4 CPU and cuSPARSE-v10.0-
based NVIDIA Tesla-P100 GPU; and the baseline UWB-GCN
design (with 1024 PEs) without workload balancing.

We also evaluate a reproduced EIE reference implementa-
tion [18] tweaked and optimized for GCN processing. EIE
conserves the sparse weight matrices on-chip, and distribu-
tively pre-loads the weight matrices to the local buffers of the
PEs. Therefore, the original EIE design cannot directly apply
to the GCN task here. To compare with EIE, we augment the
original EIE design with the same off-chip access and task for-
warding modules of UWB-GCN. The EIE results in Table
represents the performance that can be obtained by applying
existing SCNN designs for GCN workload. The comparison
demonstrate the effectiveness of workload rebalancing and the
necessity of designing new GCN-specific accelerators.

We also attempted to reproduce Cambricon-S [47]] for the
GCN workload here, and make a comparison. However, this is
not feasible because Cambricon-S adopts a 256-slot scheduling
window for index matching. It is assumed that, by fetching 256
elements per cycle, at least 16 elements can be successfully
matched in order to keep the PE busy. This may be true for
CNN workload given the relatively smaller matrix size and
low sparsity. However, for GCN workloads, to guarantee 16
elements can be forwarded to the PEs per cycle, we need
a window that can process a million elements per cycle,
which is obviously hardware unfeasible. Alternatively, we keep
the window size as 256 and measure the PE utilization of
Cambricon-S on GCN workloads. As a result, the extremely
high sparsity and large dimension of the matrix A leads
to merely 0.0013% PE utilization, once again revealing the
necessity of a GCN-specific accelerator like UWB-GCN.

Table[[T] shows that UWB-GCN has the best speedup (7.5 x)
over EIE with NELL, the most unbalanced dataset. Real-world
graphs mostly follow the power-law; therefore CNN designs
like EIE is not directly applicable (other CNN designs are
discussed in Section VI). As we can see, despite running at a
relatively low frequency, UWB-GCN achieves 248.2x, 79.0%,
2.8x and 2.7x speedups on average, over the high-end CPU,
GPU, the baseline design without workload balancing, and the
reference EIE design, respectively, across the five GCN graph
datasets. Our design also achieves 870.9x, 618.0x, 2.6x and
2.6x better energy efficiency, respectively.

In Table we compare the kernel-level utilization of
UWB-GCN (Design (D)) with the cuSPARSE-based Tesla-

i Pubmed Nell Reddit

1.00 Cora 1.00 Citeseer 0.99 0.90 0.9996
£0.95 0.95 0.98 080 0.9994
" 0.70 0.9992
So90 0.90 0.97
= 0.60 0.9990
o)

0.85 0.85 0.96 0.50 0.9988

0.80 0.80 0.95 0.40 0.9986

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Iteration ID
Fig. 17. Utilization improvement following the proposed iterative autotuning remote workload switching strategy.

Iteration ID

Iteration ID

Iteration ID

Iteration ID

@12k Cora 16K Citeseer 150K Pubmed 25M Nell 35M Reddit 10
o —— ——s —— ——
S ® = 120K 28M
< o 12k] ——s ¢ 20M 0.8
P c
[\ 90K 15M \\, 21M 068
8 6k 8K 5
2 60K 10M 14M 042
° 5
@ 3K 4K]

¢ 0.2
g 30k sMY (S 7™:
=z

0
Baseline Design(B) Design(D)

0
Baseline Design(B) Design(D)

0 Baseline Design(B) Design(D)

—o— Utilization with 512 PEs —e— Utilization with 768 PEs —#— Utilization with 1024 PEs

Fig. 18. PE Utilization and overall performance of Baseline, Design(B) and Design(D) of UWB-GCNs with different number of PEs.

TABLE III
CROSS-PLATFORM EVALUATIONS. LATENCY UNIT: ms; ENERGY
EFFICIENCY UNIT: graph_inference/kJ

Network | Cora [Citeseer [Pubmed [Nell | Reddit
Xeon Freq 2.2-3.6 GHz
ES- Latency 3.90 4.33 34.15 | 1.61E3 | 1.08E4
2698V4 Energy 1.90E3 | I.71E3 | 2169 4.61 0.69
NVIDIA Freq 1328-1481 MHz
Tesla- Latency 1.78 2.09 7.71 130.65 | 2.43E3
P100 Energy 1.87E3 | 1.59E3 | 4323 2551 1.37
EIE-like: Freq(MHz) 285 MHz
VCU118 Latency 0.022 0.024 0.22 59.1 56.3
FPGA Energy 1.19E6 | 1.11E6 | 1.20E5 | 438.2 | 452.1
Baseline: | Freq(MHz) 275 MHz
VCU118 Latency 0.023 0.025 0.23 61.0 58.9
FPGA Energy 1.21E6 | 1.09E6 | 1.16E5 | 433.3 | 447.0
UWB-GCN: | Freq(MHz) 275 MHz
VCUL118 Latency 0.011 0.018 0.14 8.1 532
FPGA Energy 2.38E6 | 1.43E6 | 1.86E5 | 3.17E3 | 497.3
TABLE IV

SPMM-KERNEL-LEVEL UTILIZATION COMPARISON BETWEEN
UWB-GCN DESIGN (D) AND CUSPARSE-BASED P100 GPU

Cora | Citeseer | Pubmed | Nell | Reddit

XWI 1093 [090 | 098 [072] 0.99

AXWID) [087 | 088 | 093 [092] 0.99
UWB-GCN g T092 T 094 | 094 093] 0.8
AXW2) [088 [09T [099 [0.73] 0.99

XWI 010 011 | 018 [0.19] 0.18

pioo | ACKWD) [003 [003 | 018 [039] 050
XW2 1009 012 [017 [0.19] 0.18

AXW2) [0.05 [003 | 0.9 [040] 0.49

P100 GPU implementation with respect to the five datasets.
UWB-GCN achieves much higher utilization than the GPU.
The low utilization of GPU is mainly due to: (i) For small
datasets such as Cora and Citeseer, the total workload is too
small that they cannot saturate all the available SMs; (ii) For
large datasets, the utilization is better, but still suffers from
workload imbalance addressed by UWB-GCN.

E. Generalization of UWB-GCN

The arithmetic primitives in GNN can be abstracted and
categorized as aggregation and embedding, where the former
multiplies the adjacency matrix by the feature matrix, and
the latter multiplies the aggregated feature matrix with the

11

0.0
Baseline Design(B) Design(D) 0 Baseline Design(B) Design(D)

I Cycles with 512 PEs I Cycles with 768 PEs Il Cycles with 1024 PEs

weight matrix to shrink the feature vector length of each node.
Various dataflow combinations of the two primitives compose
multiple GNN designs, such as GraphSage [17], GINConv
[39]], and the latest GTN [44]. Nevertheless, the kernel of both
primitives are SpMM. Given the fact that all these GNNs work
on power-law based real-world graphs, and requires SpMMs
for embedding and aggregation operations, they can all benefit
from the design practice of UWB-GCN. With that, we claim
that UWB-GCN is not for a single algorithm but a unified and
versatile architecture for various GNN algorithms.

VI. RELATED WORK

Graph neural networks or GNNs use neural network-based
approaches to address problems in graph domain. The first
GNN model is proposed by Gori et al. [15]. In Gori’s
GNN, target nodes collect information of their neighbor nodes
through recurrent neural structure until a converged status is
achieved. In the past decade, researchers never stop optimizing
the algorithms of GNNs and exploring new neural network
approaches that can be useful for the tasks in graph domain
(1O, [30[, (34, [37]l.

More recently, influenced by convolutional neural networks
(CNN) that achieve great success in extracting local features
from euclidean data such as images or videos, graph convo-
Iutional networks (GCNs) is proposed to address the feature
extraction of non-euclidean data such as graphs by re-defining
the convolution operators for graph calculation. In 2013, Bruna
et al. [[7] proposed a design of graph convolutional networks
based on spectral graph theory; this was followed and further
developed by a number of variants [[11]], [19]], [22]. Meanwhile,
other types of GNNs ,that are not based on spectral graph
theory, have also been explored and proposed, including
spatial-based GCNs [10], [[13], graph attention networks [1]],
and graph generative networks [43]]. Among different types of
GNN:gs, spectral-based GCNss are at the center of the researches
with regards to the neural network-based graph approaches.

To the best of our knowledge, the present work is the
first accelerator design focusing on GCNs. There have been

many efforts on accelerating sparse CNNs [2], [[18]], [21], [24],
[33], [45]. We briefly summarize these studies and explain
why these solutions fall short when applied to GCNs. Kung
et al. condense the sparse parameter matrix through column
grouping [24]]. In case of conflict, only the most significant
parameters are kept, others are discarded. Essentially, some
accuracy is traded-off for performance. Kim et al. [21]] mitigate
the workload imbalance problem of sparse CNNs, but use
information from design-time profiling and pre-scanning. Han
et al. [[18]] propose EIE, an SpMV accelerator that forwards
non-zeros to PEs in column-major order; this is similar to
our baseline design with TDQ-1. However, they only focus
on SpMV and do not address the workload imbalance issue
among the rows of the sparse matrix. Zhang et al. [45]] rely on
different indexing methods to identify and select non-zeros.
However, these techniques do not function well when the
matrix becomes ultra-sparse, as in GCNs. The reason these
studies do not touch on the workload imbalance issue is
partially because, compared with GCNs that process graphs,
the impact of workload imbalance for sparse CNNs is much
less significant. Chen et al. [§] propose Eyeriss. Rather than
skipping zeros, Eyeriss saves energy by power-gating compu-
tations with zeros involved.

Besides a bunch of acceleration works on sparse CNNss, re-
searchers also propose some architectures for general SpMM.
Zhuo and Prasanna [48] present an SPMV design for FPGAs.
They use the CSR format, which can be applied to various
sparse matrices. However, this design still suffers from irreg-
ular sparse structures and the workload imbalance problem.
Pal [32] proposes an outer-product-based SpMM architecture.
This work focuses on reducing redundant memory access to
non-zeros and does not essentially address the ultra-workload-
imbalanced issue we are facing in GCNs. In their experiment
results, load-imbalances during the merge phase and the un-
even data sharing patterns during the multiply phase lead to
degraded speedup for the dataset with highly-unbalanced non-
zero element distribution.

Another active area of research about SpMM is software
optimizations on general-purpose multicores and GPUs [3]]-
[5], [16], [28]. However, there are 3 reasons that solutions
on general-purpose processors do not meet the strict timing
requirement of GCN on latency. (1) significant overheads of
pre-scanning: many recent new approaches compute the entire
sparse matrix by first scanning the entire matrix, collecting
the shape characteristics and classifying the sparse rows with
different numbers of non-zero elements into different bins,
and then, for different bins, different optimized kernels are
launched [3], [16], [28]. UWB-GCN does not require any
pre-scanning and profiling. (2) poor performance and low
utilization with ultra-workload imbalance: all GPU software
implementations (PyTorch, TensorFlow) rely on SpMM in
cuSPARSE. However, cuSPARSE itself shows poor perfor-
mance regarding such ultra-imbalanced conditions (as shown
in Table [[V). (3) some sparse matrices (feature matrices)
in GCN are generated during processing and some matrices
(adjacency matrices) are evolving at runtime, making any

12

profiling and pre-scanning even less efficient.

VII. CONCLUSION

In this paper, we propose an architecture called Ultra
Workload Balanced GCN to accelerate graph convolutional
network inference. To tackle the major performance issues
derived from workload imbalance, we propose dynamic local
workload sharing and remote workload switching techniques.
These rely on hardware flexibility to realize performance
autotuning with negligible area and delay overhead. This is
the first accelerator design for GCNs that relies on hardware
autotuning to achieve workload rebalancing for sparse matrix
computations. We create RTL designs and run experiments
on a Xilinx VCU-118 FPGA with five widely used GCN
graph datasets. These show that UWB-GCN can achieve, on
average, 248.2x,79.0x, and 2.8 x speedups, respectively, over
high-end CPUs and GPUs, and the baseline design without
workload rebalancing.

REFERENCES
[1]1 S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, “Watch
your step: Learning node embeddings via graph attention,” in Advances
in Neural Information Processing Systems, 2018, pp. 9180-9190.
J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Computer Architecture News, vol. 44,
no. 3, pp. 1-13, 2016.
A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sa-
dayappan, “Fast sparse matrix-vector multiplication on gpus for graph
applications,” in Proceedings of the international conference for high
performance computing, networking, storage and analysis. 1EEE Press,
2014, pp. 781-792.
N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on cuda,” Nvidia Technical Report NVR-2008-004, Nvidia Corporation,
Tech. Rep., 2008.
N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
conference on high performance computing networking, storage and
analysis. ACM, 2009, p. 18.
R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix
completion,” arXiv preprint arXiv:1706.02263, 2017.
J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.
Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-
138, 2016.
C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H.
Green, R. Barzilay, and K. F. Jensen, “A graph-convolutional neural
network model for the prediction of chemical reactivity,” Chemical
science, vol. 10, no. 2, pp. 370-377, 2019.
H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-
states of iterative algorithms over graphs,” in International Conference
on Machine Learning, 2018, pp. 1114-1122.
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016, pp. 3844-3852.
C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan et al., “Circnn: accelerating and compressing deep neural
networks using block-circulant weight matrices,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 395-408.
H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2018,
pp. 1416-1424.

[2]

[3]

[4

=

[5

=

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1263-1272.

M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., vol. 2. IEEE, 2005, pp. 729—
734.

J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multi-
plication on gpus using the csr storage format,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC *14, 2014, pp. 769-780.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024-1034.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2016, pp. 243-254.

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

D. Kim, J. Ahn, and S. Yoo, “A novel zero weight/activation-aware
hardware architecture of convolutional neural network,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 1462-1467.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolutional
neural networks for efficient systolic array implementations: Column
combining under joint optimization,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 2019, pp. 821-834.
C.-E. Lee, Y. S. Shao, J.-F. Zhang, A. Parashar, J. Emer, S. W. Keckler,
and Z. Zhang, “Stitch-x: An accelerator architecture for exploiting
unstructured sparsity in deep neural networks,” in SysML Conference,
2018.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

W. Liu and B. Vinter, “An efficient gpu general sparse matrix-matrix
multiplication for irregular data,” in 20/4 IEEE 28th International
Parallel and Distributed Processing Symposium. 1EEE, 2014, pp. 370—
381.

Y. Liu, N. Zhang, D. Wu, A. Botterud, R. Yao, and C. Kang, “Guiding
cascading failure search with interpretable graph convolutional network,”
arXiv preprint arXiv:2001.11553, 2020.

A. Micheli, “Neural network for graphs: A contextual constructive
approach,” IEEE Transactions on Neural Networks, vol. 20, no. 3, pp.
498-511, 2009.

H.-T. Nguyen, Q.-D. Ngo, and V.-H. Le, “Iot botnet detection approach
based on psi graph and dgenn classifier,” in 2018 IEEE International
Conference on Information Communication and Signal Processing (ICI-
CSP). IEEE, 2018, pp. 118-122.

S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:
An outer product based sparse matrix multiplication accelerator,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2018, pp. 724-736.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2017, pp. 27-40.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2008.

13

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074-2082.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties,”
Physical review letters, vol. 120, no. 14, p. 145301, 2018.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

C. Yang, A. Buluc, and J. D. Owens, “Graphblast: A high-performance
linear algebra-based graph framework on the gpu,” arXiv preprint
arXiv:1908.01407, 2019.

H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2019, pp. 3165-3166.
R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. ACM,
2018, pp. 974-983.

J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn:
A deep generative model for graphs,” arXiv preprint arXiv:1802.08773,
2018.

S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” in Advances in Neural Information Processing Systems, 2019,
pp. 11960-11970.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
The 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 1EEE Press, 2016, p. 20.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-s: Addressing irregularity in sparse
neural networks through a cooperative software/hardware approach,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2018, pp. 15-28.

L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
fpgas,” in Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays. ACM, 2005, pp. 63—
74.

M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side
effects with graph convolutional networks,” Bioinformatics, vol. 34,
no. 13, pp. i457-i466, 2018.

	I Introduction
	II Motivation
	II-A Graph Convolutional Network Structure
	II-B Workload Imbalance from Power-Law Graphs

	III GCN Baseline Architecture
	III-A Matrix Computation Order
	III-B Baseline SpMM Design
	III-C Baseline Architecture Design
	III-D Pipelining SpMM Chains
	III-E The Workload Balance Problem

	IV UWB-GCN Architecture
	IV-A Dynamic Local Sharing
	IV-B Dynamic Remote Switching

	V Evaluation
	V-A Evaluation Configuration
	V-B UWB-GCN Evaluation
	V-C Scalability of UWB-GCN
	V-D Cross-platform Comparison
	V-E Generalization of UWB-GCN

	VI Related Work
	VII Conclusion
	References

